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Abstract

In this paper, we consider the free vibration analysis of thin conical shells under different boundary
conditions. The analysis is carried out using the element-free kp-Ritz method. The present study is based on
the classical thin-shell theory. The kernel particle (kp) functions are employed in hybridized form with
harmonic functions to approximate the two-dimensional displacement field. In order to examine the
numerical stability of the present approach, convergence studies are performed based on the influences of
the support size and the number of nodes. To verify the accuracy of this method, comparisons of the
present results are made with results available in the open literature. This study also examines in detail the
effects of semi-vertex angles and boundary conditions on the frequency characteristics of the conical shells.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Conical shells have found wide applications as components in practical engineering structures,
and the vibration analysis of such components is important for the safety and stability of the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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structure. The equations of motion for conical shells were summarized by Leissa [1], according to
the various thin shell theories. Based on these different shell theories, many researchers studied the
vibration of various conical shell problems. Some notable works include those by Saunders et al.
[2], Garnet and Kemper [3] and Siu and Bert [4]. In these works, the Ritz method was used to
obtain the natural frequencies. Irie et al. [5,6] studied the free vibration of conical shells with
variable thickness using the transfer matrix method. A spline finite strip method was employed by
Cheung et al. [7] to study the free vibration of singly curved shells. The vibration analysis of
isotropic and laminated composite truncated conical shells, with consideration for transverse
shear deformation, was carried out by Kayran and Vinson [8] using a combination of modal
iteration and transfer matrix approaches. Sivadas and Ganesan [9,10] investigated the effects of
thickness variation on natural frequencies of laminated conical shells by a semi-analytical finite
element method. Tong [11,12] proposed the power series expansion approach to study the free
vibration of orthotropic and composite laminated conical shells. Shu [13] employed the
differential quadrature method to study the vibration of conical shells. Lam and Li [14] used
the Galerkin method to examine the influence of boundary conditions on the frequency
characteristics of a rotating truncated circular conical shell. A global Ritz formulation was
presented by Lim and Liew [15] to study the vibratory behavior of shallow conical shells. The
effects of initial twist and thickness variation on the vibration behaviour of the shallow conical
shells were investigated [16]. Liew et al. [17] and Lim and Liew [18] also studied the vibration of
cantilevered conical shells. Some of their works also included the vibration of conical shells with
shear flexibility [19], and vibration of conical shell panels with three-dimensional flexibility [20].
The Ritz method [21], a generalization of the Rayleigh method [22], is a proven approximate

technique extensively used in computational mechanics. It is a method that is highly dependent
upon its trial functions. Examples of these trial functions used in 2-D analyses included the
products of eigenfunctions of vibrating beams (Refs. [23–26]), orthogonal characteristic beam
polynomials (Refs. [27,28]), and 2-D orthogonal plate functions (Refs. [29,30]) and 2-D basic
polynomials used in the p-version Ritz method (Ref. [31]). In the present work, the free vibration
analysis of conical shells is studied using the mesh-free kp-Ritz method [32]. This method is
developed based on the kernel particle concept; the hybrid displacement field is approximated by
the product of kernel particle (kp) functions in the longitudinal direction, and harmonic functions
in the circumferential direction. By combining the kernel particle concept with the Ritz procedure,
eigenequations for the free vibration of conical shells are derived. Discussion of our results,
focusing on the effects of the semi-vertex angles and boundary conditions on the frequency
characteristics of the conical shells, is presented.
2. kp-Ritz formulation

2.1. Energy formulation

Fig. 1 (a) shows the geometry of a thin truncated circular conical shell with semi-vertex cone
angle a; length L and thickness h. R1 and R2 are the radii at the two ends. A coordinate system
(x, y; z) is fixed on the mid-surface of the shell. The displacements of the shell in the x, y and z

directions are denoted by u, v, and w, respectively. The cone radius at any point along its length is
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Fig. 1. (a) Geometry of the circular conical shell, (b) nodal arrangement in the longitudinal direction.
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given by

RðxÞ ¼ R1 þ x sin a: ð1Þ

The kinetic energy of the conical shell is expressed as

T ¼ 1
2
rh

Z L

0

Z 2p

0

ð _u2 þ _v2 þ _w2ÞRðxÞdydx ð2Þ

and the strain energy is given by

U � ¼
1

2

Z L

0

Z 2p

0

eTSeRðxÞdydx; ð3Þ

where eT and S are the strain vector and stiffness matrix, respectively, and eT is defined as

eT ¼ fe1 e2 g k1 k2 2tg: ð4Þ

The mid-surface strains e1, e2 and g and the mid-surface curvatures k1; k2 and t are defined
according to Love’s shell theory as follows:

e1 ¼
qu

qx
; ð5Þ

e2 ¼
1

RðxÞ

qv

qy
þ

u sin a
RðxÞ

þ
w cos a
RðxÞ

; ð6Þ

g ¼
qv

qx
þ

1

RðxÞ

qu

qy
�

v sin a
RðxÞ

; ð7Þ

k1 ¼ �
q2w
qx2

; ð8Þ
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k2 ¼ �
1

R2ðxÞ

q2w

qy2
þ

cos a
R2ðxÞ

qv

qy
�
sin a
RðxÞ

qw

qx
; ð9Þ

t ¼ �
1

R2ðxÞ

q2w
qx qy

þ
cos a
RðxÞ

qv

qx
þ

sin a
R2ðxÞ

qw

qy
�

v sin a cos a
R2ðxÞ

ð10Þ

while the stiffness matrix S is given by

S ¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
666666664

3
777777775
: ð11Þ

The extensional stiffnesses Aij, extensional–bending coupling stiffnesses Bij, and bending
stiffnesses Dij are defined as

ðAij ;Bij ;DijÞ ¼

Z h=2

�h=2
Qijð1; z; z

2Þdz ð12Þ

and Q denotes the plane stress-reduced stiffness matrix

Q ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
64

3
75: ð13Þ

For an isotropic case

Q11 ¼
E

1� n2
; Q12 ¼

nE

1� n2
;

Q22 ¼
E

1� n2
; Q66 ¼ G; ð14Þ

where E is the elastic modulus, G the shear modulus, and n Poisson’s ratio. Thus, the energy
functional of the conical shell is described as

P ¼ T � U �: ð15Þ
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2.2. Hybrid approximate displacement field

The approximation of the displacement functions are expressed in hybridized kernel particle
(kp)-harmonic forms as

uðx; yÞ ¼
XNP
I¼1

cI ðxÞuI cosðnyþ otÞ;

vðx; yÞ ¼
XNP
I¼1

cI ðxÞvI sinðnyþ otÞ;

wðx; yÞ ¼
XNP
I¼1

cI ðxÞwI cosðnyþ otÞ; ð16Þ

where NP is the total number of particles, cI(x) is the shape function along the axes of the
displacements u, v and w. uI, vI and wI are the unknown nodal values of u, v and w at a given point,
and n is the circumferential half wavenumber. The nodal distribution in the longitudinal direction
is shown in Fig. 1(b). In the present study, the nodes are considered to be uniformly distributed.
The kernel particle shape function is given by [33]

cI ðxÞ ¼ Cðx;x � xI Þjaðx � xI Þ; ð17Þ

where Cðx;x � xI Þ is the correction function and ja(x � xI ) is called the kernel function.
The correction function Cðx; x � xI Þ is written as

Cðx; x � xI Þ ¼ HTðx � xI ÞbðxÞ; ð18Þ

where

Hðx � xI Þ ¼ ½1;x � xI ; ðx � xI Þ
2
	T; ð19Þ

bðxÞ ¼ ½b0ðxÞ; b1ðxÞ; b2ðxÞ	
T ð20Þ

and H is a vector of quadratic basis, while bi(x) are the functions of x to be determined.
Thus, the shape function can be assembled as

cI ðxÞ ¼ bTðxÞHðx � xI Þjaðx � xI Þ ð21Þ

and Eq. (21) can be rewritten as

cI ðxÞ ¼ bTðxÞBI ðx � xI Þ ð22Þ

in which

BI ðx � xI Þ ¼ Hðx � xI Þjaðx � xI Þ; ð23Þ

bðxÞ ¼ M�1ðxÞHð0Þ; ð24Þ

where the moment matrix M is a function of x, and H(0) is a constant vector.
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The expressions of M and H(0) are given by

MðxÞ ¼
XNP
I¼1

Hðx � xI ÞH
Tðx � xÞjaðx � xI Þ ð25Þ

HTð0Þ ¼ ½1; 0; 0	 ð26Þ

and the shape function can therefore be expressed as

cI ðxÞ ¼ HTð0ÞM�1ðxÞHðx � xI Þjaðx � xI Þ: ð27Þ

For thin shell problems, due to the governing differential equations being second orders, the
first and second derivatives of the shape function need to be determined. The procedure to
formulate the first derivative of the shape function is detailed as follows.
Firstly, Eq. (24) can be rewritten as

MðxÞbðxÞ ¼ Hð0Þ; ð28Þ

where the vector b(x) can be determined using the LU decomposition of the matrix M(x),
followed by the back substitution.
Taking the derivative of Eq. (28) leads to

M;xðxÞbðxÞ þMðxÞb;xðxÞ ¼ H;xð0Þ ð29Þ

which can be rearranged as

MðxÞb;xðxÞ ¼ H;xð0Þ �M;xðxÞbðxÞ: ð30Þ

The first derivative of b(x) can be derived again using the LU decomposition procedure. The
second derivative of b(x) can be determined by taking the derivative of Eq. (30) and using the
same procedure.
The first derivative of the shape function is derived by taking the derivative of Eq. (27)

cI ;xðxÞ ¼ bT;xðxÞBI ðx � xI Þ þ bTðxÞBI ;xðx � xI Þ: ð31Þ

The second derivative of the shape function can be determined by taking derivative of Eq. (31)
again

cI ;xxðxÞ ¼ bT;xxðxÞBI ðx � xI Þ þ 2bT;xðxÞBI ;xðx � xI Þ þ bTðxÞBI ;xxðx � xI Þ: ð32Þ

The kernel function is expressed as

ja ¼
1

d
j

x � xI

d

	 

; ð33Þ

where the dilation parameter d is the size of the support and jððx � xI Þ=dÞ is the weight function.
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In this study, the cubic spline function is chosen as the weight function

jðzI Þ ¼

2
3
� 4z2I þ 4z3I for 0 
 zIj j 
 1

2
;

4
3
� 4zI þ 4z2I �

4
3

z3I for 1
2

 zIj j 
 1;

0 otherwise;

8><
>: ð34aÞ

zI ¼
ðx � xI Þ

d
: ð34bÞ

At a given node, the size of the domain of influence is calculated by

dI ¼ dmaxaI ; ð35Þ

where dmax is the scaling factor, which generally ranges from 2.0 to 4.0. The distance aI is
determined by searching for sufficient nodes to avoid singularity of the matrix M. For a 1-D
problem, each node should have at least two neighbors in its domain of influence.
To compute the derivatives of the shape function, it is necessary to determine the derivatives of

the weight function. The first and second derivatives of weight function can be easily obtained
using the chain rule of differentiation, i.e.

dj
dx

¼
dj
dzI

dzI

dx
¼

ð�8zI þ 12z2I Þsignðx � xI Þ for 0 
 zIj j 
 1
2
;

ð�4þ 8zI � 4z2I Þsignðx � xI Þ for 1
2

 zIj j 
 1;

0 otherwise;

8><
>: ð36aÞ

d2j
dx2

¼
d2j
dz2I

dzI

dx

� �2

¼

ð�8zI þ 24zI Þ for 0 
 zIj j 
 1
2
;

ð8� 8zI Þ for 1
2

 zIj j 
 1;

0 otherwise:

8><
>: ð36bÞ

It is noted that the first and second derivatives of the weight function are continuous over the
domain.

2.3. Enforcement of boundary conditions—a penalty approach

The boundary equations cannot be imposed directly due to the lack of delta properties in the
shape function. In this study, the penalty method (see Ref. [34]), is employed for implementing the
essential boundary conditions.

2.3.1. Simply supported boundary conditions

For a domain bounded by lu, the essential boundary condition is given by

u ¼ �u on lu; ð37Þ

in which �u is the prescribed displacement on the boundary lu: Then, the variational form is
expressed by

P �u ¼
�a
2

Z
lu

ðu� �uÞTðu� �uÞdl; ð38Þ

where �a is a penalty parameter taken as 103E, and E being the Young’s modulus of the material.
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2.3.2. Clamped boundary conditions

For a domain bounded by lu, besides the boundary condition described by Eq. (37), the rotation
boundary condition is given by

b ¼ �b on lu; ð39Þ

where

b ¼
du

dx
ð40Þ

and �b is the prescribed rotation on the boundary. The variational form due to the rotation is
expressed by

P �b ¼
�a
2

Z
lu

ðb � �bÞTðb � �bÞdl: ð41Þ

Therefore, the variational form due to the clamped boundary conditions can be expressed as

PB ¼ P �u þP �b: ð42Þ

With the energy functional of Eq. (15), the total energy functional ~P for the shell is expressed as
~P ¼ PþPB: ð43Þ
2.4. kp-Ritz minimization

Substituting the displacement functions, Eq. (16), into the total energy functional, Eq. (43), and
according to the following Ritz procedure:

q ~P
quI

¼ 0;
q ~P
qvI

¼ 0;
q ~P
qwI

¼ 0; I ¼ 1; 2; . . . NP ð44Þ

and collation leads to the following matrix equation:

~K� o2 ~M
� �

û ¼ 0; ð45Þ

where

~K ¼ K�1KK�T; ~M ¼ K�1MK�T
ð46Þ

û ¼ ½û1; v̂1; ŵ1; û2; v̂2; ŵ2; :::; ûNP; v̂NP; ŵNP	 ð47Þ

in which

KIJ ¼ cI ðxJ ÞI; I is identity matrix; ð48Þ

K ¼ K� þ KB1 þ KB2 ; ð49Þ
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K�
IJ ¼ p

Z L

0

B�T
I SB�

JRðxÞ dx; ð50Þ

K
�B1

IJ ¼ �ap
Z

lu

B1B
I

T
B1B

J RðxÞdl þ

Z
lu

B1B
I �uRðxÞdl

� �
; ð51Þ

K
B2

IJ ¼ �ap
Z

lu

B2B
I

T
B2B

J RðxÞdl þ

Z
lu

B2B
I
�bRðxÞdl

� �
; ð52Þ

M ¼ rhp
Z L

0

MT
I MJRðxÞdx ð53Þ

and

B�
I ¼

qcI

qx
0 0

sin a
RðxÞ

cI

n

RðxÞ
cI �

cos a
RðxÞ

cI

�
n

RðxÞ
cI

qcI

qx
�
sin a
RðxÞ

cI 0

0 0 �
q2cI

qx2

0
n cos a
R2ðxÞ

cI

n2

R2ðxÞ
cI �

sin a
RðxÞ

qcI

qx

0
2 cos a
RðxÞ

qcI

qx
�
2 sin a cos a

R2ðxÞ
cI

2n

RðxÞ

qcI

qx
�
2n sin a
R2ðxÞ

cI

2
666666666666666666664

3
777777777777777777775

; ð54Þ

B1B
I ¼

cI 0 0

0 cI 0

0 0 cI

2
64

3
75; B2B

I ¼

cI ;x 0 0

0 cI ;x 0

0 0 cI ;x

2
64

3
75; ð55Þ

MT
I ¼

cI 0 0

0 cI 0

0 0 cI

2
64

3
75: ð56Þ

The integration of Eqs. (50)–(53) are computed using the Gauss integration, and the global
mass and stiffness matrices are furnished by assembling the quadrature points that are gathered
from the contributions at each node.
3. Example problems and numerical studies

In the present study, seven sets of boundary conditions are considered, namely, simply-
supported–simply-supported (SS–SL), clamped–clamped (CS–CL), clamped–simply-supported
(CS–CL), simply-supported–clamped (SS–CL), free–free (FS–FL), free–clamped (FS–CL), and
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free–simply-supported (FS–SL). The subscript ‘‘s’’ denoted the edge with the smaller radius, while
the subscript ‘‘L’’ denotes the edge with the larger radius. In the present numerical computation,
Poisson’s ratio is taken as n=0.3, and the non-dimensional frequency parameter f is defined as

f ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� n2Þ

E

r
; ð57Þ

where o is the natural frequency of the conical shell in radians per second.
3.1. Verification studies

To verify the present formulation and examine the accuracy of the present technique,
convergence studies are conducted and comparisons with results available in open literature are
made. The corresponding numerical results are tabulated in Tables 1–4.
Table 1 shows the convergence rate of the frequency parameter f for an isotropic conical shell of

a ¼ 601; L sin a=R2 ¼ 0:25; h=R2 ¼ 0:01; with longitudinal wavenumber, m ¼ 1: The number of
nodes is varied from 20 to 50, and support size from 2.0 to 3.0. It is observed that the present
method furnishes stable monotonic convergence characteristics. For a support size of 2.0,
converged solutions can be achieved with 20 nodes. For support size of 2.5 and 3.0, converged
results are obtained with 30 nodes. It is also observed that the results converge slightly faster when
using a support size of 2.0 as compared to the other two larger support sizes. It is also noted that
the convergence rate is independent of the circumferential wavenumber n. The present results are
compared with solutions given by Irie [6], and excellent agreement is obtained for all modes.
To examine the effects of semi-vertex angle a on the convergence characteristics of the conical

shells, convergence studies are performed for shells with a=451 and a=601. The results are
respectively tabulated in Tables 2 and 3. Similar observations as those in Table 1 are evident. It can
be observed from Tables 1–3 that the semi-vertex angle a does not affect convergence rates. Based
on the above convergence studies, a support size of 2.0 is selected for all subsequent computations.
Table 1

Comparison of frequency parameter f ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þr=E

p
for conical shell with SS–SL boundary conditions (a=301,

m ¼ 1; n ¼ 0:3; h=R2 ¼ 0:01; L sin a=R2 ¼ 0:25)

n Irie

[6]

Present

dmax ¼ 2:0 dmax ¼ 2:5 dmax ¼ 3:0

NP=20 NP=30 NP=40 NP=50 NP=20 NP=30 NP=40 NP=50 NP=20 NP=30 NP=40 NP=50

2 0.7910 0.7909 0.7909 0.7909 0.7909 0.7903 0.7903 0.7904 0.7905 0.7897 0.7901 0.7903 0.7904

3 0.7284 0.7281 0.7281 0.7281 0.7281 0.7268 0.7272 0.7275 0.7276 0.7262 0.7269 0.7272 0.7274

4 0.6352 0.6347 0.6347 0.6348 0.6348 0.6331 0.6337 0.6340 0.6341 0.6325 0.6332 0.6336 0.6339

5 0.5531 0.5522 0.5523 0.5523 0.5523 0.5506 0.5512 0.5515 0.5517 0.5500 0.5508 0.5512 0.5514

6 0.4949 0.4938 0.4938 0.4939 0.4939 0.4922 0.4928 0.4931 0.4932 0.4916 0.4924 0.4928 0.4930

7 0.4653 0.4639 0.4640 0.4640 0.4640 0.4625 0.4630 0.4633 0.4634 0.4620 0.4627 0.4630 0.4632

8 0.4654 0.4629 0.4629 0.4629 0.4629 0.4616 0.4621 0.4623 0.4625 0.4611 0.4618 0.4621 0.4623

9 0.4892 0.4875 0.4876 0.4876 0.4876 0.4863 0.4868 0.4870 0.4871 0.4860 0.4865 0.4868 0.4870
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Table 2

Comparison of frequency parameter f ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þr=E

p
for conical shell with SS–SL boundary conditions (a=451,

m ¼ 1; n ¼ 0:3; h=R2 ¼ 0:01; L sin a=R2 ¼ 0:25)

n Irie

[6]

Present

dmax ¼ 2:0 dmax ¼ 2:5 dmax ¼ 3:0

NP=20 NP=30 NP=40 NP=50 NP=20 NP=30 NP=40 NP=50 NP=20 NP=30 NP=40 NP=50

2 0.6879 0.6877 0.6878 0.6878 0.6878 0.6869 0.6872 0.6874 0.6875 0.6866 0.6870 0.6872 0.6874

3 0.6973 0.6970 0.6971 0.6971 0.6971 0.6959 0.6963 0.6966 0.6967 0.6954 0.6960 0.6963 0.6965

4 0.6664 0.6659 0.6660 0.6660 0.6660 0.6644 0.6650 0.6653 0.6655 0.6638 0.6646 0.6650 0.6652

5 0.6304 0.6297 0.6298 0.6298 0.6298 0.6279 0.6286 0.6290 0.6292 0.6273 0.6282 0.6286 0.6289

6 0.6032 0.6023 0.6024 0.6024 0.6025 0.6004 0.6012 0.6015 0.6017 0.5997 0.6007 0.6012 0.6015

7 0.5918 0.5907 0.5908 0.5909 0.5909 0.5888 0.5895 0.5899 0.5901 0.5880 0.5890 0.5896 0.5899

8 0.5992 0.5980 0.5981 0.5981 0.5981 0.5960 0.5968 0.5972 0.5974 0.5953 0.5963 0.5968 0.5971

9 0.6257 0.6243 0.6244 0.6245 0.6245 0.6224 0.6232 0.6235 0.6238 0.6217 0.6227 0.6232 0.6235

Table 3

Comparison of frequency parameter f ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þr=E

p
for conical shell with SS–SL boundary conditions (a=601,

m ¼ 1; n ¼ 0:3; h=R2 ¼ 0:01; L sin a=R2 ¼ 0:25)

n Irie

[6]

Present

dmax ¼ 2:0 dmax ¼ 2:5 dmax ¼ 3:0

NP=20 NP=30 NP=40 NP=50 NP=20 NP=30 NP=40 NP=50 NP=20 NP=30 NP=40 NP=50

2 0.5722 0.5719 0.5720 0.5720 0.5721 0.5703 0.5710 0.5714 0.5715 0.5697 0.5706 0.5711 0.5713

3 0.6001 0.5998 0.5999 0.5999 0.6000 0.5980 0.5988 0.5992 0.5994 0.5974 0.5984 0.5989 0.5992

4 0.6054 0.6049 0.6050 0.6051 0.6051 0.6029 0.6038 0.6042 0.6045 0.6022 0.6033 0.6039 0.6042

5 0.6077 0.6071 0.6073 0.6073 0.6074 0.6049 0.6059 0.6063 0.6066 0.6041 0.6054 0.6060 0.6063

6 0.6159 0.6152 0.6153 0.6154 0.6154 0.6128 0.6138 0.6143 0.6146 0.6119 0.6133 0.6139 0.6143

7 0.6343 0.6335 0.6337 0.6337 0.6338 0.6310 0.6321 0.6326 0.6329 0.6301 0.6315 0.6322 0.6326

8 0.6650 0.6641 0.6643 0.6643 0.6644 0.6616 0.6627 0.6632 0.6635 0.6606 0.6621 0.6628 0.6631

9 0.7084 0.7075 0.7076 0.7077 0.7077 0.7049 0.7060 0.7065 0.7068 0.7040 0.7054 0.7061 0.7065
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For a conical shell having a ¼ 451 and L sin a=R2 ¼ 0:5; Table 4 shows the comparison of
present results with results reported by Irie [6] and Shu [13]. Four combinations of boundary
conditions, SS–SL, SS–CL, CL–SS, and CS–CL, are considered here. The circumferential
wavenumber, n, ranges from 0 to 9. In general, an excellent agreement is observed.
From the comparison studies carried out in Tables 1–4, it is concluded that the convergent

results obtained by using a small support size and relatively less nodes. This conclusion indicates
that the present method is numerically accurate and computationally efficient.

3.2. Numerical results

The variation of the frequency parameter f, see Eq. (57), of conical shells having SS–SL
boundary conditions, with the semi-vertex angle a, are shown in Fig. 2. The longitudinal
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Table 4

Comparison of frequency parameter f ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þr=E

p
for conical shell with different boundary conditions

(a=451, m=1, n=0.3, h/R2=0.01, L sin a=R2 ¼ 0:5)

n Boundary conditions

SS–SL SS–CL CS–SL CS–CL

Shu [13] Irie [6] Present Shu [13] Irie [6] Present Shu [13] Irie [6] Present Shu [13] Irie [6] Present

0 0.2233 0.2233 0.2234 0.8700 0.8698 0.8691 0.7151 0.7149 0.7148 0.8732 0.8731 0.8732

1 0.5463 0.5462 0.5462 0.8118 0.8117 0.8113 0.7098 0.7095 0.7095 0.8120 0.8120 0.8120

2 0.6310 0.6310 0.6309 0.6613 0.6614 0.6610 0.6475 0.6474 0.6473 0.6696 0.6696 0.6696

3 0.5062 0.5065 0.5061 0.5246 0.5249 0.5244 0.5201 0.5203 0.5199 0.5428 0.5430 0.5428

4 0.3942 0.3947 0.3941 0.4319 0.4324 0.4316 0.4161 0.4164 0.4158 0.4566 0.4570 0.4565

5 0.3340 0.3348 0.3337 0.3826 0.3834 0.3822 0.3592 0.3598 0.3589 0.4089 0.4095 0.4088

6 0.3239 0.3248 0.3235 0.3737 0.3747 0.3732 0.3450 0.3458 0.3446 0.3963 0.3970 0.3961

7 0.3514 0.3524 0.3510 0.3987 0.3997 0.3980 0.3648 0.3657 0.3644 0.4143 0.4151 0.4141

8 0.4023 0.4033 0.4019 0.4479 0.4489 0.4472 0.4093 0.4102 0.4088 0.4568 0.4577 0.4567

9 0.4676 0.4684 0.4671 0.5133 0.5142 0.5124 0.4706 0.4715 0.4701 0.5177 0.5186 0.5175
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Fig. 2. Variation of frequency parameter f with semi-vertex angle a for a conical shell with SS–SL boundary conditions.
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wavenumber is m ¼ 1; while the circumferential wavenumber, n, ranges from 0 to 9, and a varies
from 101 to 701. A consistent trend is observed for the modes corresponding to n ¼ 0 to 7, where
the frequencies initially increase with increasing a and upon reaching a peak, the frequencies
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decrease as a is further increased. However, the peak for each mode occurs at different a: For
circumferential wavenumbers n ¼ 0; 4 and 5, the peak frequencies occur at a=501. For
circumferential wavenumber n ¼ 1 the peak occurs at a=201. For the modes with n ¼ 2 and 3, the
peak frequencies occur at a=401, and correspondingly for n ¼ 6 and 7, the peak frequencies occur
at a=601. However, for circumferential wavenumbers with n ¼ 8 and 9, the frequencies increase
monotonously as angle a increases. From these results, it is concluded that the semi-vertex angle a
has significant quantitative effects on the frequencies of the conical shell, and its effects on
different modes are somewhat distinct. Fig. 3 correspondingly illustrates the variation of f with a;
for conical shells of SS–CL boundary conditions. For modes with circumferential wavenumbers
n ¼ 2; 3, 4, 5, 6, 8 and 9, the same trends as those of the SS–SL case in Fig. 2 are observed. For the
modes associated with n ¼ 0 and 1, the peak frequencies occur at a=201 and a=301, respectively,
while for the mode associated with n ¼ 7; the frequencies increase in a monotonic manner as a
increases.
In Fig. 4, the variation of f with a for conical shells having CS–SL boundary conditions is

depicted. Similar trends as those in Fig. 2 for the SS–SL case are observed for modes associated
with n ¼ 229: For the two lower modes, i.e. n ¼ 0 and 1, similar qualitative trends are observed
except that the peaks now occur at a=301. For fully clamped CS–CL conical shells, the effects of a
on the frequency characteristics are presented in Fig. 5. The same trends as those for the SS–CL

case in Fig. 4 are observed. From Figs. 3 and 5, it is observed that the frequencies of the SS–CL

conical shells have relatively less-significant differences with that of the CS–CL conical shells,
whereas results for the SS–CL and CS–SL conical shells from the respective Figs. 3 and 4 display
higher relative frequency differences.
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Fig. 3. Variation of frequency parameter f with semi-vertex angle a for a conical shell with SS–CL boundary conditions.
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Fig. 4. Variation of frequency parameter f with semi-vertex angle a for a conical shell with CS–SL boundary conditions.

10 20 30 40 50 60 70

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

 n = 0   n =  1    n = 2
 n = 3   n =  4    n = 5
 n = 6   n =  7    n = 8
 n = 9

Semi-vertex angle, �

Fr
eq

ue
nc

y 
pa

ra
m

et
er

,  
 f 

Fig. 5. Variation of frequency parameter f with semi-vertex angle a for a conical shell with CS–CL boundary conditions.
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Fig. 6. Variation of frequency parameter f with semi-vertex angle a for a conical shell with FS–FL boundary conditions.
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Fig. 6 shows the corresponding frequency results for completely free FS–FL conical shells. Very
similar trends are observed in frequency variation for the corresponding modes as those in Fig. 5
for the CS–CL case. The only distinctions are that the frequency peaks for modes associated with
n ¼ 1 and 2 occur at a=201 and a=301, respectively. Fig. 7 presents the variation of f with a for
conical shells having FS–SL boundary conditions. It is observed that the frequencies show similar
trend as those of the FS–FL case in Fig. 6, for modes n ¼ 2 to 9. For the two lower modes n ¼ 0
and 1, maximum frequencies occur at a=601 instead of a=201. It is also noted that for these two
modes n ¼ 0 and 1, the frequencies for the FS–SL boundary condition case are significantly lower
than that of the completely free FS–FL conical shells. Finally, Fig. 8 shows the corresponding
frequency characteristics of conical shells having FS–CL boundary conditions. It is observed that
the frequency variations are similar to those observed for the FS–FL case in Fig. 6, except that the
maximum a for modes associated with n ¼ 2; 4 and 5, are now respectively 301, 501 and 551.
Fig. 9 shows some mode shapes of conical shells with a semi-vertex angle a=451, having the

SS–SL, SS–CL, CS–SL and CS–CL boundary conditions. The parameters used previously for
generating results in Table 4 are again adopted here to obtain the present mode shapes. It is
obvious that the effects of different boundary conditions on the mode shapes can be clearly
observed.

3.3. Numerical observations

The applicability of the Ritz method for free vibration analysis of plates and shells has been well
documented [1,31]. In this study, a major novel refinement in the manner in which the
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Fig. 7. Variation of frequency parameter f with semi-vertex angle a for a conical shell with FS–SL boundary conditions.
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Fig. 8. Variation of frequency parameter f with semi-vertex angle a for a conical shell with FS–CL boundary conditions.
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Fig. 9. Mode shapes for conical shell with different boundary conditions: (a) SS–SL; (b) SS–CL; (c) CS–SL; (d) CS–CL.
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conventional Ritz method has been formulated. Furthermore, its feasibility to vibration study of
conical shells was demonstrated. In the conventional Ritz method, the trial functions must satisfy
at least the essential boundary conditions, and the difficulties of locating appropriate trial
functions for certain boundary condition types have been well-known. The presently refinement
and development of the kp-Ritz method have overcome this limitation, in which a common shape
function type is used to generally describe the interior domain. The boundary conditions are
separately dealt with subsequently through a penalty enforcement. This enhances the kp-Ritz
method significantly, which is more robust than the conventional Ritz method.
Apart from being more robust, the kp-Ritz approach also leads to significant improvement in

computational efficiency. For different boundary conditions when the conventional Ritz
method is used, the eigenequations for each boundary condition will have to be reformulated.
In the present kp-Ritz approach, however, only the variational line integral needs to be re-
evaluated, leading to reduced computational efforts, and is comparatively simpler and easier to
deal with.
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4. Conclusions

The vibration analysis of conical shells has been successfully carried out via the mesh-free kp-
Ritz method. The numerical stability of this method for conical shell analysis has been verified by
extensive convergence studies. The computational accuracy has also been validated by
comparisons with available published results. It is concluded that the present technique is
accurate and efficient for the free vibration analysis of conical shells. Comprehensive parametric
studies involving seven variations of boundary conditions was subsequently carried out, and it
was found that the semi-vertex angle and boundary conditions significantly affect the frequency
characteristics of the conical shells.
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